Sine of a Double Angle
The formula for the sine of a double angle, denoted as sin(2θ)
, allows us to determine the sine of an angle that is twice a given angle θ
. This trigonometric identity is especially useful for simplifying expressions and solving problems involving double angles. The formula is given by:
sin(2θ) = 2sin(θ)cos(θ)
How to Calculate sin(2θ)
:
- IdentifyÂ
θ
: Start with the angleÂθ
 for which you need to find the sine of the double angle. - FindÂ
sin(θ)
: Determine the sine of the angleÂθ
. This can be done using a calculator, trigonometric tables, or known values from special angles (like 30°, 45°, 60°, etc.). - FindÂ
cos(θ)
: Determine the cosine of the angleÂθ
. Similar to finding the sine, this can be achieved through various methods including a calculator or reference to known values. - Multiply and Double:Â Once you haveÂ
sin(θ)
 andÂcos(θ)
, multiply these two values together and then double the result. Mathematically, this step is expressed as:
sin(2θ) = 2 × sin(θ) × cos(θ)
Example Calculation:
Let’s say we want to calculate sin(2θ)
 for θ = 30°
:
- DetermineÂ
sin(30°)
:sin(30°) = 1/2
- DetermineÂ
cos(30°)
:cos(30°) = √3/2
- Apply the double angle formula:
sin(2 × 30°) = sin(60°)
sin(2 × 30°) = 2 × sin(30°) × cos(30°)
sin(60°) = 2 × 1/2 × √3/2
sin(60°) = √3/2
So, sin(60°) = √3/2
, confirming our calculation is consistent with known values.
In summary, the formula sin(2θ) = 2sin(θ)cos(θ)
 provides a straightforward way to compute the sine of a double angle using the sine and cosine of the original angle θ
.
Alternative Methods to Calculate sin(2θ)
Using the Pythagorean Identity
Given the identities sin²(θ) + cos²(θ) = 1
 and the double angle identity for cosine, cos(2θ) = cos²(θ) - sin²(θ)
, we can derive another form of sin(2θ)
:
- FromÂ
cos(2θ) = 1 - 2sin²(θ)
 andÂcos(2θ) = 2cos²(θ) - 1
:cos(2θ) = 1 - 2sin²(θ)
cos(2θ) = 2cos²(θ) - 1
- SinceÂ
sin(2θ)
 andÂcos(2θ)
 are related through the Pythagorean identityÂsin²(2θ) + cos²(2θ) = 1
, we can expressÂsin(2θ)
 in terms ofÂcos(2θ)
:sin(2θ) = ±√(1 - cos²(2θ))
- UsingÂ
cos(2θ) = 1 - 2sin²(θ)
:sin(2θ) = ±√(1 - (1 - 2sin²(θ))²)
Using Euler’s Formula
Euler’s formula relates complex exponentials to trigonometric functions: e^(iθ) = cos(θ) + i sin(θ)
.
- Start with Euler’s formula for a single angle:
e^(iθ) = cos(θ) + i sin(θ)
- Square both sides to get the double angle:
(e^(iθ))² = (cos(θ) + i sin(θ))²
e^(i2θ) = cos²(θ) - sin²(θ) + 2i sin(θ) cos(θ)
- Equate the imaginary parts on both sides:
2i sin(θ) cos(θ) = i sin(2θ)
Therefore,Â
sin(2θ) = 2 sin(θ) cos(θ)
Can to use the double angle formula to calculate sin 44 theta?
Yes, you can use the double-angle formula to calculate sin(2θ) for a given θ. The double-angle formula for sine is:
sin(2θ) = 2 × sin(θ) × cos(θ)
To calculate sin(45°), follow these steps:
- Find sin(45°) and cos(45°):
- Apply the double-angle formula:
For θ = 45°, sin(45°) = cos(45°) = √2/2.
Using θ = 45°, you find sin(90°) because 2 × 45° = 90°.
sin(90°) = 2 × sin(45°) × cos(45°)
Substitute sin(45°) and cos(45°):
sin(90°) = 2 × (√2/2) × (√2/2)
sin(90°) = 2 × 2/4
sin(90°) = 2 × 1/2
sin(90°) = 1
So, sin(90°) = 1 and using the double-angle formula confirms this result.